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1. Topic and Author 
Epidemiologic Issues in the Clinical Diagnosis of Angina.  George A. Diamond, MD, FACC 
 
2. Where we stand in 2002. Overview/rationale for inclusion of topic.  

 
Cardiac diagnostic testing is becoming progressively more complex as the number of procedures available to the 

physician—and the uses to which they are put—continue to increase. One consequence of this technologic explosion is that 
test interpretation is made more difficult by the frequent occurrence of discordant results. At such times, rational judgments 
can be compromised if words alone are used to describe complex beliefs. For example, when 205 subjects were asked to 
assign a numeric probability to the meaning of the word "often", their estimates ranged from a low of only 0.2 to a high of 
0.9 (1-4). If the meaning of such words is so variable, how shall we best ensure the accuracy of our judgments? 

Bayes' theorem is the formal rule by which one integrates the interpretation of any combination of observations in light 
of past experience (5). I outline herein the conceptual importance of Bayes' theorem to clinical test interpretation, and show 
how it can be used to help the physician interpret tests for the diagnosis and evaluation of coronary artery disease.  
 
Bayes Theorem. The conventional measures of test accuracy are called sensitivity and specificity. Sensitivity (also called 
true positive rate) measures a test's ability to correctly indicate the presence of disease. Numerically, it is the frequency of a 
positive test result in a population with disease. Specificity (also called true negative rate) measures a test's ability to cor-
rectly indicate the absence of disease. Numerically, it is the frequency of a negative test result in a population without 
disease. These definitions, therefore, separate a tested population into four subsets—two test result subsets ("positive" and 
"negative") and two diagnostic subsets ("disease" and "nondisease"). These subsets are illustrated in table 1.  

Although sensitivity and specificity define a test's inherent accuracy, its ultimate interpretation depends on a third 
variable—the prevalence of disease in the tested population.  Numerically, prevalence is the frequency of disease in the 
population. For example, consider a population of 100 patients with an intermediate disease prevalence of 50%—50 
patients with disease and 50 patients without disease. If we evaluate each of these patients with a test that has a 70% 
sensitivity and 90% specificity we would expect the following: 
 
    50 x   0.7   = 35 True  Positive Test Responses 
 
    50 x (1-0.9) =  5 False Positive Test Responses  
 

There are, therefore, a total of 40 positive test responses, only 35 of which occurred in diseased patients. The 
prevalence of disease in the population of patients with a positive test response is therefore 35/(35+5) or 88%. Similarly, the 
probability of disease for any given patient with a positive test is also 35/(35+5) or 88%. The prevalence of disease in a 
population, then, is operationally equivalent to the probability of disease in any individual member of that population. 

Likewise, if we analyze the population of negative test responders, we would expect the following: 
  
    50 x (1-0.7) =  15 False Negative Test Responses 
 
    50 x   0.9   =  45 True  Negative Test Responses 
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There are a total of 60 negative test responses, and 15 of these occurred in patients with disease. The prevalence of 

disease in the population of patients with negative test responses is 15/(15+45) or 25%, and the probability of disease for a 
patient with a negative test response is also 15/(15+45) or 25%. Again, prevalence is equivalent to probability. 

These probabilistic outcomes for a positive test response (P+) and a negative test response (P-) can be calculated di-
rectly using a simple formula based on Bayes' theorem of conditional probability: 

 
Sensitivity x Prevalence 

P+ = ———————————————————————— 
         Sensitivity x Prevalence + (1-Specificity) x (1-Prevalence) 

 
(1-Sensitivity) x Prevalence 

P- = ———————————————————————— 
       (1-Sensitivity) x Prevalence + Specificity x (1-Prevalence) 

 
Our example illustrates two important features of all diagnostic tests. First, a positive (or abnormal) test does not es-

tablish the presence of disease; it only increases its probability. Second, a negative (or normal) test does not exclude the 
presence of disease; it only lessens its probability. Only if a diagnostic test were perfect—and none is—can the test result be 
accepted without question. Table 2 summarizes the probability of disease given a positive or negative test result for a range 
of disease prevalence prior to testing. Thus, if the sensitivity and specificity are known, Bayes' theorem provides a prob-
abilistic interpretation of any test observation as a function of the probability of disease before the test is performed. Note 
that when prior disease probability is very high (e.g., over 90%) or very low (e.g., under 10%), the test is of limited value. 
All diagnostic tests are of most value when disease probability is intermediate (e.g. around 50%)—when we are most 
uncertain. In a high prevalence population, a positive test response serves to confirm the presence of disease, while a 
negative response does not exclude disease. Likewise, in a low prevalence population, a negative test serves to confirm the 
absence of disease, while a positive test does not establish disease presence. 

 
Estimating CAD Probability. The probability of coronary artery disease can be estimated from the patient's age, sex, and 
symptom classification. One widely used classification system is based on three readily determined historical characteristics 
that are generally accepted as being typical of ischemic cardiac discomfort:  

 
    Is the discomfort substernal? 
    Is it precipitated by exertion? 
    Is there prompt relief by rest or nitroglycerin? 
 
When all three of these questions are judged by the physician to have been answered in the affirmative, the patient's 

discomfort is interpreted as typical angina. When only two of the three answers are affirmative, the discomfort is interpreted 
as atypical angina. When fewer than two answers are affirmative, the discomfort is interpreted as nonanginal. Table 3 
summarizes the probability of coronary artery disease based upon a broad review of the medical literature (5). This model 
has been validated in a number of investigations (6-22). 
 
Verification Bias. This classification schema was developed in a population of approximately 5,000 patients undergoing 
coronary angiography because of suspected coronary artery disease in the decade between 1966 and 1976 (prior to the 
widespread use of nuclear stress testing, myocardial revascularization and preventive agents such as ACE inhibitors, beta 
blockers, aspirin and statins). Less than one third of these patients were reported to have undergone electrocardiographic 
stress testing. It is likely then that these patients were selected for diagnostic verification in ways very different from those 
currently used (in the WISE population, for example). 

In this context, estimates of test accuracy are often highly distorted by the differential referral of positive and 
negative test responders for diagnostic or prognostic verification (23-25)—an affirmative consequence of the exercise of 
good clinical judgment. Diagnostic tests for coronary artery disease, for example, are usually verified by referral for 
coronary angiography. But only a small fraction of patients suspected of having coronary artery disease are actually referred 
for angiography, and those who are referred often are not typical of the larger population that they come to represent (26). 
Thus, patients who are selected for angiography on clinical grounds tend to have more abnormal clinical findings and more 
extreme test responses than those not so selected—whether or not they have disease. This bias causes a systematic 
overestimation of diagnostic sensitivity, and an underestimation of diagnostic specificity (24,26). 

Suppose you have a diagnostic test with a sensitivity of 70% and a specificity of 90%. Suppose further that you so 
rely on this test, that you refer each and every patient with a positive test response for diagnostic verification, but you never 
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refer a patient with a negative test response for verification. Because only positive test responders will undergo verification, 
every diseased patient will have a positive test (observed sensitivity=100%), but so will every non-diseased patient 
(observed specificity=0%). 

Now suppose that this same test has a prognostic sensitivity of 70% and a prognostic specificity of 90% over a 
specific duration of follow-up. Suppose further that you refer each and every patient with a positive test response for 
treatment (and away from prognostic verification through longitudinal follow-up), and that you never refer a patient with a 
negative test response for treatment. Because only negative test responders will undergo prognostic verification, every 
patient who does not manifest a clinical event during the follow-up period will have a negative test (observed 
specificity=100%), but so will every patient who does manifest an event (observed sensitivity=0%).  

Thus, whenever the proportion of patients with a positive test response who are referred for verification is different 
from the proportion of patients with a negative test response, the observed sensitivity and specificity are different from the 
actual sensitivity and specificity (27-29). This so called verification bias (variably called selection bias, post-test referral 
bias, and work-up bias) produces directionally opposite effects on sensitivity and specificity with respect to diagnosis and 
prognosis.   

Verification bias can have a major effect on observations in the WISE.  Suppose physicians are predisposed to 
believe that women often have highly atypical symptoms suggestive of ischemic heart disease. As a result, they might be 
inclined to refer any women with “squirrelly” symptoms for an exercise SPECT study, and to refer any of those with a 
positive study for coronary angiography. Every woman who is thereby documented to have coronary artery disease will 
also have these “squirrelly” symptoms, even though the published data on the frequency of nonanginal chest discomfort 
predicts a very low frequency (table 3).  This does not justify treating women with such highly atypical symptoms as being 
at risk for coronary artery disease. 

Diamond et al. have developed a strategy for quantifying the sensitivity and specificity of a test (24) using the 
probability of disease derived from age, sex, symptom classification, and the results of previous noninvasive testing as a 
surrogate for angiographic verification (24). Similarly, Begg and Greenes have described a method to correct estimates of 
sensitivity and specificity that are distorted by this bias, assuming that verification is not conditioned on diagnostic or 
prognostic outcome independent of the test result, and that predictive accuracy of the test is thereby invariant with respect 
to verification bias (30). This method explains the observed variability in sensitivity and specificity of exercise 
electrocardiography among patients undergoing coronary angiography by the preferential referral of abnormal test 
responders for diagnostic verification (27), and provides a suitable method to correct biased estimates of sensitivity and 
specificity (31-36).  

In summary: 
(i) Preferential referral of positive or negative test responders for diagnostic verification can seriously distort 

(bias) empirical estimates of test sensitivity and test specificity (25);  
(ii) these distortions can be mitigated in various ways (24,30,32,37) by considering the distribution of test 

responses in the unverified patient cohort (debiasing); 
(iii) additional consideration of ancillary clinical observations (covariates) can improve the accuracy of these 

debiased estimates (30-32,38,), but the magnitude of this improvement is not necessarily statistically 
significant or clinically important (31-32); 

(iv) receiver-operating characteristic (ROC) curve area, regardless of the particular method of its determination, is 
comparatively insensitive to verification bias (39-40). 

 
 
3. Current challenges and the most important issues for future research  
 
The key assumption underlying the historical evaluation of patients for symptoms of myocardial ischemia is that earlier and 
more accurate diagnosis of the underlying obstructive coronary artery disease will lead to more appropriate utilization of 
tests and treatments, thereby resulting in better clinical and economic outcomes. Two factors cast doubt on this reasoning: 
 

• Clinical diagnostic tests (including symptom classification schemas) developed in angiographic populations cannot 
be applied to non-angiographic populations without adjusting for the distorting effects of verification bias. 

 
• Even if a valid symptom classification schema—applicable to patients prior to the decision to refer for stress testing 

or coronary angiography—were developed, it is now well-recognized that symptoms are a very late manifestation 
of atherosclerotic disease, and that coronary events often develop as a consequence of the destabilization of a 
hemodynamically insignificant atherosclerotic plaque. Such plaques are clinically silent. They do not cause 
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symptoms and cannot be reliably detected by even the most sophisticated noninvasive exercise tests.  Thus, even if 
accuracy is no longer an issue, the clinical relevance of this effort is still open to question. 

 
What is most needed then is an accurate and clinically relevant approach to the triage of patients for assignment to 
prospectively validated optimal age and sex specific management strategies for the prevention of ischemic events, 
maintenance of quality-of-life, and maximization of cost-effectiveness. 
 
 
4. Current challenges in the areas of communicating messages to health care community, patients and 
the public 

 
Published reports often emphasize statistical significance (p-values) over clinical importance (magnitude of benefit).  

At the same time, the current trend toward larger and larger clinical trials has unearthed a number of limitations in the 
conventional assignment of statistical significance (41,42).  Thus, because these so-called “megatrials” are often cited as the 
authoritative foundation for evidence-based practice policies, their underlying credibility is open to question and deserving 
of a critical reappraisal. Toward this end, we might enlist federal agencies such as the National Institutes of Health, Food 
and Drug Administration, Health Care Financing Administration, Department of Veterans Affairs, and Institute of Medicine 
to empanel a task force—along the lines of the Consolidated Standards of Reporting Trials (CONSORT) group (43)—
comprising clinical trialists, health outcomes researchers, epidemiologists, statisticians, journal editors, and policy makers. 
The task force would be mandated to define the theoretical and practical standards for the conduct and reporting of clinical 
trials (supported, perhaps, by scientific comparisons of previously published empirical data and by reasonable computer 
simulations). In the course of doing so, the task force would standardize representations of prior probability, and integrate 
the observed magnitude of treatment effect (absolute and relative risk reductions) with this background information. 
Appropriately vetted statistical software instantiating these standards could be developed and disseminated via the Internet. 
 
 
5. Translating new findings to improved diagnosis and treatment/saving lives.  

 
Currently, there is a major disconnect among the various partisan sectors involved in health care (patients, payers, 

providers) regarding what we are doing (the descriptive perspective) versus what we should be doing (the prescriptive 
perspective).  The former is guided more by financial incentive (reimbursement being greater for procedures than for 
preventive care) and by the conventional mediolegal “standard of care” (behavioral norms) than by the scientific “standard 
of care” (clinical trial evidence).  The greatest challenge for the future will be to find ways to overcome this disconnect, and 
to develop politically acceptable, clinically realistic incentives to encourage optimal evidence-based management strategies 
(44-47).   
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TABLE 1.  Definition of testing terms. 
 
 
 
                                        Disease State         
 
 
                                     Present               Absent 
 
 
                   Positive      True Positive    False Positive 
                                        (TN)                 (FP) 
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 Test Result 
 
                   Negative     False Negative    True Negative 
                                         (FN)                   (TN) 
 
 
 
 
 
 
 True Positive Rate    =       TP        =    Sensitivity 
                                       TP + FN 
 
 True Negative Rate    =      TN       =    Specificity 
                                       TN + FP 
 
 False Positive Rate   =       FP        =    1 - Specificity 
                                      TN + FP 
 
 False Negative Rate   =    FN        =    1 - Sensitivity 
                                      TP + FN 
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TABLE 3. Prevalence of coronary artery disease according to age, sex, and symptoms 

FEMALES 
 
Age    Asymptomatic    Nonanginal     Atypical      Typical 
                           Discomfort      Angina        Angina 
___________________________________________________________ 
  
35             0.3               1                4       26 
45               1             3              13             55 
55             3             8              32             79 
65          8            19              54              91 
 
 
MALES 
 
Age    Asymptomatic    Nonanginal     Atypical      Typical 
                         Discomfort      Angina       Angina 
___________________________________________________________ 
 
35               2                5               22           70 
45               6           14               46            87 
55            10            22               59            92 
65            12             28               67            94 
___________________________________________________________ 
 
All values are in percent 
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